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Some statistical background

With given vector µ ∈ Rm and lower triangular matrix L ∈ Rm×m, we can defined a
random vector z as follows:

ϵ ∼ N(0, I)

z = µ + Lϵ

With this way of constructing z , we have:

Mean of z : E[z ] = µ

Variance of z : Var(z) = E[(z − E[z ])(z − E[z ])T ] = E[Lϵ(Lϵ)T ] = LE[ϵϵT ]LT = LLT

Hence, we have the following distribution for z

z ∼ N(µ, Σ), where Σ = LLT (1)
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The model

The factorized Gaussian posterior from Model 1 can be extended to a Gaussian with full
covariance:

qϕ(z |x) = N(µ, Σ) (2)
where unlike before, Σ is now a fully populated matrix.
Hence our new encoder/inference model: qϕ(z |x):

EncoderNeuralNetϕ(x)→ (µ, log σ, L′)

L← Lmask ⊙ L′ + diag(σ)
ϵ ∼ N(0, I)

z = µ + Lϵ, Hence: z ∼ N(µ, Σ = LLT )
Here Lmask is a masking matrix with zeros on and above the diagonal, and ones below the
diagonal. ⊙ is an elementwise multiplication operator.
The generative/decoding model: pθ(x |z)

DecoderNeuralNetθ(z)→ x̂
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Computing ELBO

From previous lectures we know:

Lθ,ϕ(x) = Eqϕ(z|x)[log(pθ(x , z))− log(qϕ(z |x))]

But instead of maximizing ELBO, as before, we prefer to minimize negative of ELBO. Hence
we have:

Uθ,ϕ(x) = −Lθ,ϕ(x)
= −Eqϕ(z|x)[log(pθ(x , z))− log(qϕ(z |x))]

≈ Eqϕ(z|x)

[
log

[
qϕ(z |x)
pθ(z)

]]
︸ ︷︷ ︸

Encoder regularizarion

+ −log(pθ(x |z))︸ ︷︷ ︸
Decoder reconstruction error

; (From Model 1 slide)

≈ DKL(qϕ(z |x)||pθ(z)) + (1/nd)
n∑

i=1

d∑
j=1

(xij − x̂ij)2
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Computing ELBO

We need to compute: DKL(qϕ(z |x)||pθ(z)). We know:

qϕ(z |x) = N(µ, LLT ) and pθ(z) = N(0, I)

Hence, with µ1 = µ and Σ1 = LLT , µ2 = 0, Σ2 = I: we have:

DKL(qϕ(z |x)||pθ(z)) = 1
2

[
log |Σ2|
|Σ1|

−m + Tr(Σ−1
2 Σ1) + (µ2 − µ1)T Σ−1

2 (µ2 − µ1)
]

= 1
2

[
−

m∑
i=1

log σ2
i −m + Tr(LLT ) +

m∑
i=1

µ2
i

]
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Cost functions
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Kullback-Leibler(KL) distance/divergence

Kullback–Leibler divergence (also called relative entropy and I-divergence), denoted
DKL(P||Q), is a type of statistical distance: a measure of how one probability distribution
P is different from a second, reference probability distribution Q
Assuming both P and Q have normal distributions with means µ1 and µ2 and variances
Σ1 and Σ2 respectively. Then KL divergence from Q to P is:

DKL(P||Q) = EP(x)

[
log

[
P(x)
Q(x)

]]

=
∫

[log(P(x))− log(Q(x))]P(x)dx

= 1
2

[
log |Σ2|
|Σ1|

− d + Tr(Σ−1
2 Σ1) + (µ2 − µ1)T Σ−1

2 (µ2 − µ1)
]
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Cross-Entropy loss function

Also referred to as logarithmic loss, log loss or logistic loss.
Each predicted class probability is compared with actual class label/probability of 0 or 1.
Cross-entropy is defined as:

LCE = −
m∑

i=1
pi log(qi)

where pi is the true class label and qi is the softmax probability of i th class. Also, m is
the number of classes.
For example, if we have 3 classes (1/2/3) and for a sample, the target class is class 2,
then the true class label vector can be: [0,1,0] and if at the last layer the predicted
probabilities are [q1, q2, q3], then the loss is:

LCE = −log(q2)

This also shows why cross entropy loss is sometimes equivalent to negative
log-likelihood
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Mean Squared/Sum Squared loss function

Mainly used for regression problems.
With n samples, if the true target value vector is y ∈ Rn and the predicted value vector is
ŷ ∈ Rn, then Sum Squared Error (SSE) is:

SSS =
n∑

i=1
(yi − ŷi)2

And, Mean Squared Error (MSE) is:

MSE = 1
n

n∑
i=1

(yi − ŷi)2
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