0	U	Т	L	I	Ν	Ε

Model 2: VAE with full covariance Gaussian posteriors

Prashant Shekhar

March 30, 2023

Computing ELBO

Appendix: cost functions

Table of Contents

1 Model with full-cov Gaussian posterior

2 Computing ELBO

3 Appendix: cost functions

0		T	IN	
υ	υ		IN	
0				

Model with full-cov Gaussian posterior \bullet^{\bigcirc}

Computing ELBO

Appendix: cost functions

Some statistical background

• With given vector $\mu \in \mathbf{R}^m$ and lower triangular matrix $L \in \mathbf{R}^{m \times m}$, we can defined a random vector z as follows:

$$\epsilon \sim N(0, I)$$

 $z = \mu + L\epsilon$

• With this way of constructing *z*, we have:

Mean of $z : \mathbf{E}[z] = \mu$

Variance of z : $Var(z) = \mathbf{E}[(z - \mathbf{E}[z])(z - \mathbf{E}[z])^T] = \mathbf{E}[L\epsilon(L\epsilon)^T] = L\mathbf{E}[\epsilon\epsilon^T]L^T = LL^T$

• Hence, we have the following distribution for z

$$z \sim N(\mu, \Sigma)$$
, where $\Sigma = LL^T$ (1)

OUTLINE O	Model with full-cov Gaussian posterior $\circ \bullet$	Computing ELBO	Appendix: cost functions
The model			

The factorized Gaussian posterior from Model 1 can be extended to a Gaussian with full covariance:

$$q_{\phi}(z|x) = N(\mu, \Sigma) \tag{2}$$

where unlike before, Σ is now a fully populated matrix. Hence our new **encoder/inference** model: $q_{\phi}(z|x)$:

$$\begin{aligned} \textit{EncoderNeuralNet}_{\phi}(x) &\to (\mu, \log \sigma, L') \\ L &\leftarrow L_{mask} \odot L' + \textit{diag}(\sigma) \\ \epsilon &\sim \textit{N}(0, \textit{I}) \\ z &= \mu + L\epsilon, \quad \text{Hence: } z &\sim \textit{N}(\mu, \Sigma = \textit{LL}^{T}) \end{aligned}$$

Here L_{mask} is a masking matrix with zeros on and above the diagonal, and ones below the diagonal. \odot is an elementwise multiplication operator. The **generative/decoding** model: $p_{\theta}(x|z)$

 $\mathit{DecoderNeuralNet}_{ heta}(z)
ightarrow \hat{x}$

OUTLINE O	Model with full-cov Gaussian posterior	Computing ELBO ●○	Appendix: cost functions
Computi	ng ELBO		

From previous lectures we know:

$$\mathcal{L}_{ heta,\phi}(x) = \mathsf{E}_{q_{\phi}(z|x)}[log(p_{ heta}(x,z)) - log(q_{\phi}(z|x))]$$

But instead of maximizing ELBO, as before, we prefer to minimize negative of ELBO. Hence we have:

$$\begin{aligned} \mathcal{U}_{\theta,\phi}(x) &= -\mathcal{L}_{\theta,\phi}(x) \\ &= -\mathbf{E}_{q_{\phi}(z|x)} [log(p_{\theta}(x,z)) - log(q_{\phi}(z|x))] \\ &\approx \underbrace{\mathbf{E}_{q_{\phi}(z|x)} \left[log \left[\frac{q_{\phi}(z|x)}{p_{\theta}(z)} \right] \right]}_{\text{Encoder regularization}} + \underbrace{-log(p_{\theta}(x|z))}_{\text{Decoder reconstruction error}} ; \text{ (From Model 1 slide)} \\ &\approx D_{\mathcal{K}L}(q_{\phi}(z|x)) || p_{\theta}(z)) + (1/nd) \sum_{i=1}^{n} \sum_{j=1}^{d} (x_{ij} - \hat{x}_{ij})^2 \end{aligned}$$

OUTLINE O	Model with full-cov Gaussian posterior	Computing ELBO ○●	Appendix: cost functions
Comput	ing ELBO		

We need to compute: $D_{KL}(q_{\phi}(z|x)||p_{\theta}(z))$. We know:

$$q_{\phi}(z|x) = N(\mu, LL^{T})$$
 and $p_{\theta}(z) = N(0, I)$

Hence, with $\mu_1 = \mu$ and $\Sigma_1 = LL^T$, $\mu_2 = 0$, $\Sigma_2 = I$: we have:

$$D_{KL}(q_{\phi}(z|x)||p_{\theta}(z)) = \frac{1}{2} \left[\log \frac{|\Sigma_{2}|}{|\Sigma_{1}|} - m + Tr(\Sigma_{2}^{-1}\Sigma_{1}) + (\mu_{2} - \mu_{1})^{T}\Sigma_{2}^{-1}(\mu_{2} - \mu_{1}) \right]$$
$$= \frac{1}{2} \left[-\sum_{i=1}^{m} \log \sigma_{i}^{2} - m + Tr(LL^{T}) + \sum_{i=1}^{m} \mu_{i}^{2} \right]$$

ΩU	IT.	LI	N	
υu			Ν	
0				

Cost functions

OUTLINE 0

Kullback-Leibler(KL) distance/divergence

- Kullback-Leibler divergence (also called relative entropy and I-divergence), denoted D_{KL}(P||Q), is a type of statistical distance: a measure of how one probability distribution P is different from a second, reference probability distribution Q
- Assuming both P and Q have normal distributions with means μ_1 and μ_2 and variances Σ_1 and Σ_2 respectively. Then KL divergence from Q to P is:

$$D_{\mathcal{K}L}(P||Q) = \mathbf{E}_{P(x)} \left[\log \left[\frac{P(x)}{Q(x)} \right] \right]$$

= $\int [\log(P(x)) - \log(Q(x))]P(x)dx$
= $\frac{1}{2} \left[\log \frac{|\Sigma_2|}{|\Sigma_1|} - d + Tr(\Sigma_2^{-1}\Sigma_1) + (\mu_2 - \mu_1)^T \Sigma_2^{-1}(\mu_2 - \mu_1) \right]$

\cap		N	
U	υI	IN	
0			

Cross-Entropy loss function

- Also referred to as logarithmic loss, log loss or logistic loss.
- Each predicted class probability is compared with actual class label/probability of 0 or 1.
- Cross-entropy is defined as:

$$L_{CE} = -\sum_{i=1}^{m} p_i \log(q_i)$$

where p_i is the true class label and q_i is the softmax probability of i^{th} class. Also, m is the number of classes.

• For example, if we have 3 classes (1/2/3) and for a sample, the target class is class 2, then the true class label vector can be: [0,1,0] and if at the last layer the predicted probabilities are [q₁, q₂, q₃], then the loss is:

$$L_{CE} = -\log(q_2)$$

This also shows why cross entropy loss is sometimes equivalent to negative log-likelihood

ERAU

 $\underset{\circ \circ}{\overset{\textbf{Computing ELBO}}{\overset{}}}$

Appendix: cost functions ○○○●

Mean Squared/Sum Squared loss function

- Mainly used for regression problems.
- With *n* samples, if the true target value vector is $y \in \mathbf{R}^n$ and the predicted value vector is $\hat{y} \in \mathbf{R}^n$, then Sum Squared Error (SSE) is:

$$SSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• And, Mean Squared Error (MSE) is:

$$MSE = \frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$$



