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Model with full-cov Gaussian posterior
(1}

Some statistical background

o With given vector ;1 € R™ and lower triangular matrix L € R™*™ we can defined a
random vector z as follows:
e ~ N(0,/)

z=p+ Le

@ With this way of constructing z, we have:
Mean of z: E[z] = i

Variance of z : Var(z) = E[(z — E[z])(z — E[z])"] = E[Le(Le) "] = LE[ee"]LT = LLT

@ Hence, we have the following distribution for z

z~ N(u,X), where ¥ = LLT (1)
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Model with full-cov Gaussian posterior
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The model

The factorized Gaussian posterior from Model 1 can be extended to a Gaussian with full
covariance:

qp(z[x) = N(u, X) (2)
where unlike before, ¥ is now a fully populated matrix.
Hence our new encoder /inference model: g4(z|x):
EncoderNeuralNet4(x) — (1, log o, L)

L4 Lmask © L + diag(c)
e~ N(0,/)
z=p+Le, Hence: z~ N(pu, X =LLT)

Here L ,.sk is @ masking matrix with zeros on and above the diagonal, and ones below the
diagonal. ® is an elementwise multiplication operator.
The generative/decoding model: py(x|z)

DecoderNeuralNety(z) — %
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Computing ELBO
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Computing ELBO

From previous lectures we know:

L,4(x) = Eqg,(zx)[log(po(x, 2)) — log(qy(z|x))]

But instead of maximizing ELBO, as before, we prefer to minimize negative of ELBO. Hence
we have:

Upp(x) = —Lg,¢(x)
= —Eg,(z1x) [log(po(x; 2)) — log(qs(z|x))]

qs(2]x)
po(2)

~ Eq¢(z|x) /og

+  —log(pe(x|2)) ; (From Model 1 slide)
—_————

Decoder reconstruction error

Encoder regularizarion

n d
~ D (qp(zX)11ps(2)) + (1/nd) > > (x5 — %j)°

i=1j=1
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Computing ELBO
oe

Computing ELBO

We need to compute: Dy (q¢(z|x)||po(2)). We know:
qs(2[x) = N(u, LLT) and py(z) = N(0, /)

Hence, with pi; = pand X3 = LLT, pup =0, ¥ = I: we have:

Dki(ag(z]x)llps(2)) = llbg Z2l oy Tr(53 20) + (2 — 1) T 25 (2 — Ml)]

2] 7%
1 . 2 T . 2
== —Zlogai—m—i—Tr(LL )—i—Zu,—
i=1 i=1
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Cost functions
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Appendix: cost functions
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Kullback-Leibler(KL) distance/divergence

o Kullback-Leibler divergence (also called relative entropy and I-divergence), denoted
Dki(P||Q), is a type of statistical distance: a measure of how one probability distribution
P is different from a second, reference probability distribution Q

@ Assuming both P and @ have normal distributions with means 1 and p and variances
31 and X, respectively. Then KL divergence from @ to P is:

Dki(P||Q) = Ep(y) l'og [P(X)H

Q)
— [llog(P(x)) — log(@())IP(x)dx

1 _
= ['0 :Z: d+ Tr(Z3 ' %0) + (2 — 1) "55 H(u2 — )
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Appendix: cost functions
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Cross-Entropy loss function

@ Also referred to as logarithmic loss, log loss or logistic loss.
@ Each predicted class probability is compared with actual class label/probability of 0 or 1.
@ Cross-entropy is defined as:

m
Lee == pilog(qi)
i=1

where p; is the true class label and g; is the softmax probability of it class. Also, m is
the number of classes.

@ For example, if we have 3 classes (1/2/3) and for a sample, the target class is class 2,
then the true class label vector can be: [0,1,0] and if at the last layer the predicted
probabilities are [q1, g2, g3], then the loss is:

Lce = —log(q2)

This also shows why cross entropy loss is sometimes equivalent to negative
log-likelihood
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Appendix: cost functions
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Mean Squared/Sum Squared loss function

@ Mainly used for regression problems.
o With n samples, if the true target value vector is y € R” and the predicted value vector is

y € R", then Sum Squared Error (SSE) is:

SSS = (vi— )
i=1

@ And, Mean Squared Error (MSE) is:
n

1 N
MSE = - Z(y,' - yi)2
i=1
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